Code: 20CS5501

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

COMPUTATIONAL THINKING (MINORS in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Discuss the four pillars of computational	L2	CO1	6 M			
		thinking in detail.						
	b)	Develop an algorithm to find the roots of a	L3	CO2	8 M			
		quadratic equation considering all cases.						
	OR							
2	a)	Define algorithm. Explain algorithm for	L2	CO1	8 M			
		swapping of two numbers.						
	b)	Develop an algorithm to compute factorial	L3	CO2	6 M			
		of a given integer.						
UNIT-II								
3	a)	Discuss algorithm to generate prime number	L2	CO2	7 M			
		series between m and n, where m and n are						
		integers.						
	b)	Construct an algorithm and flowchart to	L3	CO2	7 M			
		compute prime factors of an integer of your						

		choice.					
		OR					
4	a)	Construct an algorithm for finding smallest	L3	CO2	6 M		
		divisor of an integer.					
	b)	Develop an algorithm and draw flowchart	L3	CO2	8 M		
		for finding the square root of a number.					
UNIT-III							
5	a)	Develop an algorithm for finding the	L3	CO3	7 M		
		maximum number of array elements.					
	b)	Define array. Explain an algorithm for array	L2	CO1	7 M		
		order reversal that starts out with two					
		indices, i=0 and j=n+1.With each iteration i					
		is increased and j is decreased for i <j.< td=""><td></td><td></td><td></td></j.<>					
		OR					
6	a)	Develop an algorithm to find the biggest	L3	CO3	8 M		
		number and smallest number of given 'n'					
		numbers using arrays.					
	b)	Distinguish between all loop statements	L2	CO3	6 M		
		along with a flowchart.					
		UNIT-IV					
7	a)	What do you mean by sorting? Summarize	L2	CO3	8 M		
		the different types of sorting.					
	b)	Describe insertion sort with an example.	L2	CO3	6 M		
		OR					
8	a)	Analyze insertion sort algorithm and trace	L4	CO4	8 M		
		the steps of insertion sort for sorting the list					
		[12, 19, 33, 26, 29, 35, 22, 37] find the total					

		no. of comparisons made.							
	b)	Discuss exchange sort algorithm with	L2	CO1	6 M				
		suitable example.							
	UNIT-V								
9	a)	Explain different types of text processing	L2	CO1	8 M				
		and pattern searching algorithms.							
	b)	Explain with an example	L2	CO1	6 M				
		i) Sublinear pattern search							
		ii) Linear pattern search							
	OR								
10	a)	Develop an algorithm for finding the	L3	CO3	8 M				
		"keyword" in given text.							
	b)	Explain the difference between text	L2	CO1	6 M				
		processing and pattern searching algorithms							
		with the help of examples.							